This weeks focus is on supervised classification, particularly with the Maximum Likelihood method. This is a continuation of last week that started the classification discussion with unsupervised classification. The exercise and assignment culminated in the map below revolved around imagery provided by UWF with the following objectives:
The process is fairly straightforward with only a couple things to watch out for when establishing the spectral signatures. Being sure to avoid spectral confusion. This is where multiple features exhibit similar spectral signatures. This usually occurs most frequently in the visual bands, and can be avoided by doing a good check using tools such as band histograms or spectral mean plotting which shows you the mean spectral value of one or more bands simultaneously. We can see some of the results of this below, such as the merging of the urban / residential and the roads/urban mix.
This is a Land Use derivative for Germantown Maryland. It was created using a base image and supervised classification looking for the categories displayed in the legend. This map shows the acreage of areas as they currently exist and is intended to provide a baseline for change. As areas get developed the same techniques can be used on more and more current imagery to map the change and gauge which land uses are expanding / shrinking most and by how much.
This was an excellent introduction to one method of supervised classification, there are many other types and reasons to conduct it, but those are for another class. Thank you.
- Create spectral signatures and AOI features
- Produce classified images from satellite data
- Recognize and eliminate spectral confusion between spectral signatures
The process is fairly straightforward with only a couple things to watch out for when establishing the spectral signatures. Being sure to avoid spectral confusion. This is where multiple features exhibit similar spectral signatures. This usually occurs most frequently in the visual bands, and can be avoided by doing a good check using tools such as band histograms or spectral mean plotting which shows you the mean spectral value of one or more bands simultaneously. We can see some of the results of this below, such as the merging of the urban / residential and the roads/urban mix.
This is a Land Use derivative for Germantown Maryland. It was created using a base image and supervised classification looking for the categories displayed in the legend. This map shows the acreage of areas as they currently exist and is intended to provide a baseline for change. As areas get developed the same techniques can be used on more and more current imagery to map the change and gauge which land uses are expanding / shrinking most and by how much.
This was an excellent introduction to one method of supervised classification, there are many other types and reasons to conduct it, but those are for another class. Thank you.
No comments:
Post a Comment